Posts Tagged ‘אנטרופיה’

פרק שישי, ובו הרהור פילוסופי על אנטרופיה וחץ הזמן, והסיפור האכזרי והלא יאמן על בולצמן התם ולוכשמידט האכזר

יוני 22, 2010

בפרק הקודם הגדרנו את הגודל הזה שנקרא "אנטרופיה", וראינו מהי משמעותו של החוק השני של התרמודינמיקה: במערכת סגורה, האנטרופיה תגיע למקסימום. עם התקדמות הזמן האנטרופיה הולכת בכיוון אחד — מעלה. כשניסינו לתת לאנטרופיה משמעות מעבר לנוסחה המתמטית שלה — משמעות ב-"נפנופי ידיים" — כינינו אותה מדד ל-"אי הסדר" שבמערכת. בסוף הפוסט, בתור דוגמה, אמרתי שאם נניח ספל קפה חם בחדר ממוזג, אחרי זמן מה האנרגיה מספל הקפה תתפזר על פני כל החדר. המצב ההפוך — בו האנרגיה מכל החדר מתרכזת לספל הקפה — מייצג הקטנה של האנטרופיה ולכן לא יקרה.

אני מניח שרובכם, גם אם לא הנהנתם בראשכם למקרא הדוגמה הזו, לא הופתעתם ממנה. האינטואיציה האנושית שלנו מסתדרת יפה עם הרעיון הזה. אף אחד, הרי, לא מצפה שבאמת כל האנרגיה מהחדר תתרכז לכוס.

ובכן — במובן מסוים, נאיבי להחריד, הפיזיקאים דווקא כן מצפים שדבר כזה יקרה.

אני מניח שרובכם, גם אם לא הופתעתם מהמשפט האחרון, בוודאי רוצים להצביע על בעיה כלשהי במה שכתבתי. כפי שכתבתי אך בפסקת הפתיחה — ראינו כבר כיצד הפיזיקה, באמצעות שימוש במתמטיקה, דווקא מצליחה להסביר את התופעה הזו. אם כך — למה התכוונתי כשאמרתי שהפיזיקאים דווקא מצפים לכך שהאנרגיה מכל החדר תתרכז בכוס? כדי לפשט ולסייע בהבנה, נתמקד במערכת אותה כבר תיארנו בפרק הקודם: כדורי ביליארד המתנגשים זה בזה ללא אבדן אנרגיה. המערכת הזו יכולה לתאר בצורה יעילה גם את האנרגיה בכוס הקפה ההיפותטית לעיל — האנרגיה מועברת בין חלקיקי החומר באמצעות התנגשויות דומות לאלו של כדורי הביליארד.

אם כך, הבה נתבונן בהתנגשות אחת בודדת בין שני כדורים. דמיינו שאני מקרין בפניכם סרט של ההתנגשות: לא ניתן לקבוע אם הסרט מוקרן "קדימה" בזמן או "אחורה" בזמן! הסיבה לכך שאנחנו לא יכולים לדעת את זה, מהתבוננות בהתנגשות בודדת, היא הסימטריה להיפוך בזמן של חוקי הפיזיקה. כל התנגשות בין שני כדורים יכולה להתרחש בסדר הפוך ממה שהיא התרחשה, וחוקי הפיזיקה יהיו תקפים בדיוק באותה מידה.

וכאן אנו מגיעים לסתירה לכאורה: מתוך אוסף של התנגשויות שכל אחת מהן סימטרית להיפוך בזמן, ולכן חסרת כיוון זמן מוגדר, מופיע גודל — האנטרופיה — שעם הזמן רק גדל. כלומר הגודל הזה נותן כיוון לזמן. אם אני אקרין בפניכם סרט המראה כוס קפה קרה המתחממת כאשר האנרגיה מהחדר מתרכזת בה, יהיה לכולם ברור שהסרט מוקרן מהסוף להתחלה. אבל כל התנגשות בודדת בין מולקולות המתועדת בסרט ההיפותטי הזה לא יכולה לחשוף את העובדה הזו. המערכת נשלטת על ידי חוקים האדישים לכיוון הזמן, אבל בצורה קסומה כלשהי יש לה כיוון זמן מוגדר! אני מציע לקוראים לעצור כאן לרגע, לחשוב על הסתירה הזו ולראות אם אתם יכולים להעלות דרכים ליישובה.

הפיזיקאי הגרמני לודוויג בולצמן היה הראשון להגדיר את האנטרופיה. הוא החל מתיאור מערכת דינמית הדומה לכדורים המתנגשים שלנו, ומתוך ניתוח דינמי של המערכת הוא הגדיר גודל שסומן באות H והראה שהוא קטן עם הזמן. הגודל הזה הוא פשוט מינוס האנטרופיה שהגדרנו בפרק הקודם. ראוי להתעכב כאן ולהעיר שהתיאור של בולצמן מקיף יותר מהתיאור שלנו בפרק הקודם, כיוון שהוא מתאר גם את הדינמיקה של המערכת, ולכן יכול לשמש גם לתיאור המערכת מחוץ לשיווי משקל, לדוגמה.

הסתירה בה אנו דנים כעת — בין הסימטריה בזמן של חוקי הפיזיקה לאותו גודל שהצלחנו לחלץ המציג הפרה בוטה של הסימטריה הזו, הטרידה כבר את בני תקופתו של בולצמן. הפיזיקאי והכימאי יוהן לוכשמידט ניסח את הבעיה הזו בפרדוקס הקרוי על שמו, והצטרף לרבים אחרים שתקפו את בולצמן בשל אותה H-Theorem מגונה שהוא ניסח, שהראתה את חד הכיווניות של הזמן. לסיפורנו, לצערי, סוף עגום. בולצמן, שההתקפות שספג הצטרפו לדכאון ממנו סבל גם כך, שם לבסוף קץ לחייו ב-1906, בגיל 62.

הבה ננסה ליישב את הפרדוקס. ראשית, ראוי לציין שהפרשנות שלי היא אחת אפשרית בלבד, ולוקטה מקריאה פה ושם של מספר ניתוחים של הבעיה (המאמר בקישור מומלץ במיוחד). מבחינה פרדיגמטית, אם אינני טועה, אין תשובה מוסכמת לפרדוקס הזה, ונראה שהוא לא מטריד יתר על המידה את העוסקים בתחום (ולטעמי העובדה הזו הופכת את כל הסיפור הזה למעניין פי כמה וכמה). נקודת המפתח כאן, לדעתי, היא העובדה שהאנטרופיה היא גודל סטטיסטי מטבעו, שמתבסס על חוסר הידיעה שלנו את כל הפרטים על המערכת. המוטיבציה לניתוח הסטטיסטי, שהוביל לבסוף להגדרת האנטרופיה, היתה זניחת התיאור המדויק של המערכת. אם אנחנו נדע לתאר את המערכת בצורה מדויקת אין כל טעם בשימוש בכלים של הפיזיקה הסטטיסטית: המערכת נמצאת במצב מסוים, ואנחנו יודעים בדיוק לתאר באיזה מצב היא תהיה. המושג של האנטרופיה — שמתאר התפלגות סטטיסטית של המצב של המערכת — מאבד את משמעותו בסיטואציה כזו. מכאן אנחנו יכולים להסיק שבעצם למערכת נתונה ברגע נתון אין בעצם אנטרופיה. מכיוון שהמערכת נמצאת במצב מסוים מוגדר מאוד, אין כל טעם לדבר על ההתפלגות של המצבים בהם היא יכולה להמצא. האנטרופיה מקבלת משמעות כשאנחנו מדברים על מערכת מסוימת לאורך פרקי זמן ארוכים מספיק (שיכולים להיות קצרים מאוד במונחים אנושיים) או על אוסף של מערכות. רק אז, כשאנחנו מוכנים לזנוח את הרדיפה אחר ידע מדויק, אנחנו יכולים להנות מהכלים שמאפשרים לנו לדבר על הסתברויות.

כאשר אנחנו מחליפים את התיאור המדויק של המערכת בתהליך בו המערכת עוברת בין התפלגויות שונות של מצבים, אנחנו זורקים חלק מהמידע שיש לנו על המערכת. בתיאור מדויק, אנחנו יכולים לצעוד "אחורה" בזמן ולדעת בדיוק מה היה מצב המערכת לפני זמן מסוים, ולצעוד "קדימה" בזמן ולדעת בדיוק מה הוא יהיה לאחר שזמן מה יחלוף. כשאנחנו מדברים על התפלגות סטטיסטית של מצב המערכת, אנחנו לא יודעים מאיזה מצב המערכת הגיעה למצב הנוכחי. בדיוק כאן טמון חץ הזמן. הגידול באנטרופיה מייצג תהליך של אבדן אינפורמציה לגבי ההיסטוריה של המערכת (לא לחינם מושג האנטרופיה אומץ עבור תורת האינפורמציה). אבדן האינפורמציה הזה הוא החום שעובר במערכת, והויכוחים לגבי אופיו של אותו גודל מסתורי וחמקמק אותו אנחנו מכנים "חום" ליוו את השנים הראשונות להתפתחותה של התרמודינמיקה כמדע. אבל עוד על כך, אני מקווה, נוכל לדבר בפרק הבא, בו גם נגדיר ונבין את מושג הטמפרטורה.

אני מקווה שלודוויג בולצמן, פיזיקאי דגול, נח על משכבו בשלום.

פרק חמישי, ובו אנחנו לומדים להכיר מערכות מורכבות יותר, ובין היתר מכירים את מושג האנטרופיה ומוכיחים את החוק השני של התרמודינמיקה

מאי 21, 2010

(ברצוני להודות לשחר מ-"תודעה כוזבת" על הערותיו מאירות העיניים, אשר סייעו בכתיבת הפוסט)

עד כה, כשדיברנו על המטרה שלנו כתיאור ההתנהגות של המערכת, דרשנו שנוכל להגיד איפה כל גוף בה נמצא בכל רגע נתון. כלומר שעבור כל גוף נוכל לכתוב את המיקום שלו כפונקציה של הזמן. אם אנחנו חושבים על המערכת כמכילה כוכב לכת המקיף את השמש, או על כמה כדורים שמתנגשים זה בזה, הרי שהמצב פשוט יחסית. אבל מה קורה אם מספר הגופים הוא עצום? מה קורה אם אנחנו מדברים לא על גוף אחד או שניים אלא על 10^{23} גופים — שזהו פחות ממספר האטומים שיש בגרם אחד של מימן? רק כדי שאפשר יהיה לקבל פרורפוציה על גודלו של המספר הזה, מאז שנוצרה מערכת השמש חלפו כ-10^{17} שניות — אחד חלקי מיליון ממספר הגופים במערכת שלנו. במערכת כזו, ברור שאין טעם לדבר על מיקומו של כל גוף בכל זמן שהוא. גם אם היינו יכולים לכתוב את אוסף הפונקציות האלה לא היינו ממש יודעים מה לעשות איתו. בדיוק כדי לטפל במערכות כאלו נולדה המכניקה הסטטיסטית. במכניקה סטטיסטית אנו זונחים את הרעיון לפיו התיאור הרצוי של המערכת הוא תיאור המיקום של כל אחד מהגופים, ועוברים לעסוק בתכונות של המערכת כולה. אלו הם גדלים סטטיסטיים במובן שכל אחד מהחלקיקים הרבים שמרכיבים את המערכת תורם להם.

מכיוון שעלינו לוותר על שאלות הנוגעות לגופים ספציפיים בתוך המערכת, ולעבור לגדלים סטטיסטיים על המערכת כולה, אנחנו צריכים לדעת כיצד לבחור את התיאור הנכון של המערכת. נביט, בתור דוגמה למערכת פשוטה, על אוסף של כדורי ביליארד המתנגשים זה בזה על גבי שולחן בעל צורה כללית כלשהי. נניח שהכדורים אינם מאבדים אנרגיה — כלומר שאין חיכוך בינם לבין השולחן ושאנרגיה לא אובדת בהתנגשויות ביניהם. אם כך, ברור לנו שהאנרגיה הכוללת של המערכת נשמרת ולא משתנה בזמן. אבל ישנן מערכות רבות החולקות את אותה האנרגיה: אנחנו יכולים לחשוב על מצב בו כל הכדורים נמצאים במנוחה ורק כדור אחד נע במהירות עצומה, או על מצב בו לכל הכדורים פחות או יותר מהירות זהה שהיא אך שבריר ממהירותו של הכדור במצב הראשון שתואר. ובין שני מצבי הקיצון הללו ישנו רצף עצום ורב של מצבים שונים המייצגים התפלגות שונה של המהירויות. מבחינה אינטואיטיבית ברור לנו שאם נתחיל עם מערכת בה כל הכדורים נמצאים במנוחה ורק לכדור אחד מהירות גבוהה מאוד, הרי שכעבור זמן מה הוא יתנגש בכדורים אחרים, יעביר אליהם ממהירותו וכך אט-אט המערכת תתקרב יותר למצב בו כל הכדורים נעים והאנרגיה מתחלקת באופן שוויוני יותר בין כולם. האינטואיציה הזו, כמובן, אינה נכונה תמיד, ובהמשך אני ארחיב מעט על מערכות בהן התהליך הזה אינו מתרחש, אבל עבור מערכת כללית התיאור הזה יחסית מדויק. כיצד אנו יכולים לתאר את האינטואיציה הזו בצורה מתמטית?

נביט על אוסף כל המצבים שמאופיינים באנרגיה E. עם חלוף הזמן מערכת בעלת אנרגיה E "מטיילת" בין המצבים השונים באוסף. כלומר אם בזמן כלשהו המערכת היתה במצב עם התפלגות מהירויות מסוימת, הרי שכעבור זמן מה, ובעקבות התנגשויות בין הכדורים, התפלגות המהירויות תשתנה. כעת נניח הנחה — שהיא כלל אינה טריביאלית — ולפיה אנו לא יכולים להעדיף מצב אחד באוסף על פני רעהו. כלומר אם יש לנו N מצבים בעלי אנרגיה זהה, הרי שהסיכוי שהמערכת תהיה באחד מהם ברגע נתון הוא 1/N. אם אנחנו רוצים להסתכל על גודל המאפיין את המערכת לאורך פרק זמן מסוים אנחנו יכולים להחליף את המיצוע על פני זמן במיצוע על פני אוסף דמיוני של הרבה מערכות, שהמצב של כל אחת מהן נבחר באקראי מבין אוסף כל המצבים בהסתברות שווה. זוהי, פחות או יותר, ההנחה היחידה שאנחנו צריכים להניח כדי להסיק את מרבית המכניקה הסטטיסטית. הבה נראה לאן אנחנו יכולים להגיע בעזרתה.

נגדיר כעת גודל, שנקרא האנטרופיה של המערכת, שפשוט מתאר כמה מצבים יש בעלי אנרגיה מסוימת. מסיבות טכניות, האנטרופיה היא לא מספר המצבים אלא הלוגריתם של המספר הזה (מי שלא זוכר מהו לוגריתם מוזמן ללחוץ על הקישור להסבר פשוט)


S(E)=\log\Gamma(E)

כש-\Gamma(E) הוא מספר המצבים בעלי אנרגיה E. מושג האנטרופיה הוא מושג פופולרי מאוד, שזכה לתפוצה רחבה מחוץ לפיזיקה ואומץ במגוון של תחומים (תורת האינפורמציה, לדוגמה). באופן פופולרי נוטים לעתים להצביע על האנטרופיה כגודל שמסביר כמה "אי-סדר" יש במערכת, וכתיאור פופולרי זהו אכן הסבר לא רע, אבל כדאי לזכור שאנטרופיה היא גודל פיזיקלי עם הגדרה יחסית קשיחה מבחינה מתמטית. אני מקווה שבהמשך הפוסט יתבהר הקשר הזה בין ההגדרה המתמטית לעיל לבין ההסבר הפופולרי והאינטואיטיבי למושג.

כעת נחלק את המערכת הדמיונית שלנו לשני חלקים, אחד בעל אנרגיה E_1 והשני בעל אנרגיה E_2=E-E_1. מהו הסיכוי שנמצא את שני חלקי המערכת עם ערכי אנרגיה כאלו? כמובן שהסיכוי פרופורציונלי למספר המצבים הקיימים בהם האנרגיה מתחלקת כך. מספר המצבים מתקבל ממכפלת מספר המצבים בהם לתת המערכת הראשונה אנרגיה E_1 ולתת המערכת השניה אנרגיה E_2


P(E_1) \propto \Gamma(E_1)\Gamma(E-E_1)=e^{S(E_1)+S(E-E_1)}

המספר הזה הולך וגדל ככל שהסכום S(E_1)+S(E-E_1) הולך וגדל. כלומר שהסיכוי למצוא את המערכת במצב מסוים יהיה גבוה יותר ככל שהאנטרופיה של חלקי המערכת השונים תהיה גבוהה יותר. הכלל הזה ידוע בתור החוק השני של התרמודינמיקה. זהו התיאור המתמטי המקביל לאינטואיציה האומרת לנו שאם נתחיל ממערכת "מסודרת" מאוד, בה כל האנרגיה מרוכזת בכדור אחד, אחרי זמן מה נקבל מערכת "מבולגנת" בה כל הכדורים נעים במהירות פחות או יותר זהה. הסיבה לכך היא שיש הרבה יותר מצבים בהם כל הכדורים נעים מאשר רק כדור אחד נע, והסיכויים לכך מתנהגים בהתאם. כמה "הרבה יותר" מצבים? ככל שהמערכת גדולה יותר — וכזכור אנו עוסקים במערכות ענקיות — הרי שהתפלגות הסיכויים לחלוקת אנרגיה מסוימת ולא אחרת היא חדה יותר סביב ערכים ספציפיים.

הבה נמחיש ונסביר את ההתנהגות הזו באמצעות פישוט הדוגמה שלנו. במקום מהירויות שיכולות לקבל כל ערך שהוא, נניח שיש לנו מספר מסוים של מנות של אנרגיה שאנחנו יכולים לחלק בין הכדורים. כעת, נשאל כיצד מתפלג סך האנרגיה של קבוצת כדורים קטנה מסוימת. נתחיל במספרים קטנים יחסית: אם יש לנו 4 מנות אנרגיה, 3 כדורים ואנחנו מעוניינים לדעת מהם הסיכויים שכדור אחד מסוים יקבל ערכי אנרגיה שונים? הכדור יכול להיות חסר אנרגיה, במקרה הזה אנחנו צריכים לחלק את 4 מנות האנרגיה בין שני הכדורים האחרים, ויש 5 דרכים שונות לעשות זאת (ספרו!). כעת לכדור יכולה להיות מנת אנרגיה בודדה, ואנחנו צריכים לחלק את שלוש מנות האנרגיה הנותרות בין שני הכדורים הנותרים, פעולה שיש 4 דרכים שונות לעשות. באופן דומה, שתי מנות אנרגיה לכדור יתקבלו משלוש דרכים שונות; יש שתי דרכים שונות בהן לכדור תהיינה שלוש מנות אנרגיה ולבסוף רק סיטואציה אחת בה לכדור כל 4 מנות האנרגיה — במקרה הזה שני הכדורים האחרים נותרים מיותמים. אם נסדר את התוצאות בטבלה, היא תראה כך




כאשר העמודה השלישית מתארת את החלק היחסי של האנרגיה שיש לכדור שלנו מכלל האנרגיה במערכת, והעמודה הרביעית את הסיכוי של כל תרחיש, כאשר הסיכוי נורמל בצורה קצת יוצאת דופן — התרחיש הסביר ביותר קיבל את הערך 1 וסיכויי התרחישים האחרים חושבו ביחס אליו. במבט ראשון, הטבלה עשויה לסתור את האינטואיציה הטבעית שלנו, שאומרת שרוב הסיכויים הם שלכדור יהיה בערך שליש מכלל האנרגיה. ביחס לממוצע, האינטואיציה שלנו עדיין נכונה (ממוצע האנרגיה היחסית שיהיה לכדור הוא בדיוק שליש), אבל התרחיש הסביר מכולם הוא דווקא שלכדור לא תהיה כלל אנרגיה.

אבל זו מערכת קטנה מאוד, ומיותר להשתמש במכניקה סטטיסטית כדי לנתח אותה. מה יקרה כאשר נגדיל את המערכת? נניח שיש לנו M מנות של אנרגיה, N=3M/4 כדורים ואנחנו מעוניינים בהתפלגות האנרגיה היחסית של Q=N/3 כדורים (שימו לב שמדובר ביחסים זהים לאלו בתסריט שחושב לעיל). חישבתי את ההתפלגות הזו עבור ערכי M הולכים וגדלים והתוצאות מוצגות בגרף הבא. ציר x הוא שיעור האנרגיה היחסית של קבוצת הכדורים, וציר y הוא הסיכוי המנורמל שזו תהיה האנרגיה, הקו האנכי השחור מציין המצב בו שליש מהאנרגיה הכוללת במערכת נמצאת באותם Q כדורים




כפי שניתן להתרשם, ככל שהמערכת גדלה כך הסיכויים הולכים ומתמקדים סביב הערך של שליש, וכבר במערכת קטנה יחסית של 256 מנות אנרגיה, המתחלקות על פני 192 כדורים, ההתפלגות היא חדה מאוד. כך שהסיכוי שנמצא את המערכת באותה חלוקה לא-סבירה של אנרגיה — בה מעט כדורים זוכים להרבה אנרגיה — מתקרב במהירות לאפס. לא פירטתי את הדרך בה חישבתי את ההתפלגות — זהו תרגיל נחמד בקומבינטוריקה שאני ממליץ לקוראים להשתעשע בו (אפשר לבקש רמזים בתגובות).

בתור דוגמה נוספת, יום-יומית ואולי אינטואיטיבית יותר, אפשר לחשוב על כוס קפה שהונחה בחדר. המצב הראשוני הוא בו הרבה אנרגיה מרוכזת בכוס, אך עם חלוף הזמן האנרגיה מתחלקת פחות או יותר שווה בשווה בין חלקי החדר השונים. למרות שיכול להיות מצב בו דווקא ההפך יקרה — כלומר שהאנרגיה מחלקי החדר תתרכז לכוס (והקפה יתחמם מחדש) — הרי שזה טרם קרה לי, ואני מנחש שגם הקוראים טרם חוו חוויה כזו. כשאנחנו מסתכלים על הגרף למעלה, אנחנו יכולים להבין את הסיבה לכך.

בפוסטים הבאים אני מקווה להמשיך ולפתח את הנושא של מכניקה סטטיסטית, ובין היתר להגדיר את אותו גודל חמקמק שנקרא "טמפרטורה". אבל לפני שנמשיך ראוי להזכיר את המצבים המעניינים בהם הכלים הסטנדרטים של המכניקה הסטטיסטית מכשילים אותנו. נניח ששולחן הביליארד שלנו אינו בעל צורה אקראית, אלא מלבן. ונניח שאנחנו מרכזים יפה את כל הכדורים מלבד אחד בפינה אחת שלו, ולכדור הנותר אנו נותנים מהירות כך שהוא פשוט ינוע בין שני קירות מנוגדים של השולחן, בלי להתקרב לאוסף הכדורים שנח בפינה. ברור שבמצב כזה המערכת לא "מטיילת" בכל מרחב המצבים שווי האנרגיה, ושגם כעבור זמן אינסופי נוותר בדיוק באותו המצב. קיימים שני סוגים של מערכות פיזיקליות מעניינות בעלות תכונה זו — הן נמצאות רק בחלק ממרחב המצבים. סוג אחד נקרא מערכות "לא-ארגודיות" והסוג השני מערכות "אינטגרביליות", וראוי להקדיש לכל אחת מהן פוסט משל עצמן. אבל עוד חזון למועד.